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A thermodynamic ensemble of stable RNA structures should emerge in the long-time limit as a result
of an expeditious exploration of conformation space. The design of a simulation of this exploration giv-
ing consistent results in the long-time limit has been hindered by two main factors: (1) the need to in-
corporate the kinetic or activation-energy barriers for structure conversion and (2) the possibility of
competing folding pathways. In this work, we implement a parallel kinetically controlled simulation
that encompasses both aspects and ultimately yields all significant contributors to the thermodynamic

ensemble.

We provide evidence supporting the conjecture that thermodynamic representativity may be

reproduced by introducing an appropriate learning or updating strategy in a kinetically controlled parallel
simulation. The results are specialized to the illustrative cases of a transfer RNA and a midivariant-1
QB RNA for which the dominant native and non-native structures have been independently established.
In both cases the thermodynamic ensemble is reproduced.

PACS number(s): 87.15.He, 36.20.Ey

The simulation of competing folding pathways for an
RNA molecule treated in vitro calls for a parallel compu-
tation that can handle simultaneously different folding al-
ternatives [1,2]. In implementing a parallel strategy we
ultimately aim at reproducing the thermodynamic ensem-
ble of secondary structures that should result from an
expeditious exploration of conformation space.

In this context, two different levels of parallelism may
be envisioned: (a) Massive parallelism [3,4], aimed at re-
vealing cooperative effects in structure formation. The
processing units consist of single putative Watson-Crick
base pairs. (b) Multiprocessed floating-point Monte Car-
lo simulations of sequential folding [1,2], in which each
processor deals at a given time with a single folding path-
way and the processing units are topologically admissible
(nonknotted) secondary structures with a time-dependent
activation.

We shall focus on the second level of parallelism to im-
plement a simulation in which the final destination pro-
cessing units constitute the most significant contributions
to the thermodynamic ensemble. In rigorous terms, this
implies that the level of activation of the destination
structure should be very close to its Boltzmann weight.
This result would not be unexpected were it not for the
fact that the activation of each processing unit is not con-
trolled by the net stabilities of structures connected to it
but is governed by the activation-energy barriers of struc-
ture conversion [1,5]. On the other hand, this kinetic
control in the folding process cannot be overlooked since
relevant experimental time scales invariably constrain the
search in conformation space [5,6].

Within these premises, the central problem is to con-
struct a learning or connection-updating strategy that
makes kinetic control compatible in the long-time limit
with thermodynamic representativity. That is, the final
destination structures should be the significant contribu-
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tors to the ensemble of most stable structures. An updat-
ing of connectivities that converges relatively fast to a
winner-takes-all strategy [1,3,4] would not be adequate
since it would lead to a dominant kinetically arrested
structure, as shown in our first illustrative example. In-
stead, we show that an adequate strategy consists in
strengthening a connectivity whenever it provides max-
imum stimulation to the activation of a given structure at
a given stage of the simulation.

The basic tenets of a parallel kinetically controlled
simulation will be introduced, the updating strategy will
be implemented, and the results will be illustrated with
the computation of all significant folding pathways for
two RNA molecules of general interest: (a) The so-called
midivariant-1 RNA (MDV-1RNA), a natural replication
template for the enzyme Qp-replicase, whose active
structure is known [5,7]; and (b) a transfer RNA (tRNA)
from E. coli, whose optimal active folding in the form of
a cloverleaf base-pairing pattern has been firmly estab-
lished to be a folding motif in most tRNA’s [8,9].

The search for pre-mRNA structures starts with the
very first refolding event during the synthesis of the mole-
cule [1,2,5,10]. Given the relatively short biological times
scales involved (approximately 15 s for the synthesis by
sequential incorporation of nucleotides of a fragment 220
nucleotides long [5]), the exploration of configuration
space concomitant with chain growth becomes heavily
time constrained. Thus any algorithm which attempts to
predict biologically relevant structures must incorporate
the restrictions which bias exploration of configuration
space. Earlier we proposed a Monte Carlo simulation
which handles refolding events concurrent with sequential
polymerization events, in an attempt to account for bio-
logical time constraints. The simulation mimics a Mar-
kov process such that if at a given stage a refolding event
has a larger transition rate than a polymerization event,
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the former is chosen, whereas if the reverse holds, the
chain grows by incorporation of one nucleotide.

For the sake of completion, we shall first sketch the
general tenets of the simulation. The Markov process is
comprised of three different kinds of kinetically governed
elementary events: (I) intrachain partial helix formation,
(IT) intrachain helix decay, and (III) chain growth by in-
corporation of a single nucleotide, with a fixed rate of
phosphodiester linkage of 50 s~!. The transition time for
each event is a Poisson random variable. Eighteen simu-
lations at most may be run in parallel, with each
floating-point VAX 8650 computer processor dealing
with a single competing folding pathway. The branching
of folding pathways itself is the result of flexibility in the
choice of structures to be formed at each stage of poly-
merization.

We shall start by describing the computation of the op-
timal pathway and then determine how to compute the
branching leading to competing pathways. The interac-
tive units are RNA secondary structures accessible for
specific lengths of the chain, from N =1 to, say, N ~ 10
Only structural elements such as loop-stem systems,
internal loops, and bulge loops are allowed, as discussed
presently [1,2,5]. Given two arbitrarily chosen structures
i and j, the rate for the interconversion i —j is denoted
k(i— j) or, alternatively, kij, and is defined as

ki'=kiht+ksy (1

where k;} denotes the time span for dismantling the
minimal portion of structure / which must be refolded to
yield structure j and k f_(}) is the time span of formation of
structure j starting from a partially dismantled structure
i. The only substructures whose disruption or formation
we allow are single or multiple stem-loop systems. Thus
two structures whose interconversion requires two trans-
formations (dismantling and refolding) of the type indi-
cated might be connected and they are disconnected if
their interconversion requires the occurrence of more
than than two such events.

The inverse mean time for intrachain helix dismantling
(an elementary event of type II) may be obtained from the
kinetics for helix decay [1,6]:

kgiyy=t '=fnexp(G,/RT], 2)

where f is the kinetic constant for a single base-pair for-
mation (estimated at 10% s~ !, cf. [1,6]), n is the number of
base pairs in the helix, and G, is the (negative) free-
energy contribution of the set of base-pairs in the helix.
Thus the essentially enthalpic term —G, should be re-
garded as the activation energy for helix disruption. If an
admissible helix formation (an elementary event of type I)
happens to be the event favored, the inverse of the mean
time for the transition will be given by

kpp=t"'=fnexp(—AGo,, /RT) , 3)

where AG),,, is the change in free energy due to the clo-
sure of the loop concurrent with helix formation. Loop
closure is the rate-limiting event; therefore this quantity
is essentially the activation energy of helix formation,
corresponding to a loss in conformational entropy. Since

ARIEL FERNANDEZ 48

water is a relatively good solvent for RNA, excluded-
volume effects might be significant [11]. Therefore we
shall treat the negative entropic change due to loop for-
mation as a convex function of the number of unpaired
bases in the loop. In order to allow for the possibility of
large loops we shall adopt an accurate function [11,12]
to incorporate excluded-volume effects: AS),,,=—2.1
—[23/121nu], where u is the number of unpaired bases
in the loop. This substantially increases the time span of
the simulation as well as the order of the algorithm.

We can see from general Egs. (1)—(3) that the kinetical-
ly controlled simulation is dependent on a compilation of
thermodynamic parameters. The computation of the
rates of refolding events generated rely on a compilation
of free-energy increments for the formation of helical re-
gions [13] and loops [14]. In particular, the enthalpic pa-
rameters carry an uncertainty of at least 2% [13]. On the
other hand, the essentially entropic contributions for loop
closure are particularly unreliable since they have been
derived for small synthetic oligonucleotides. The param-
eters have been corrected to encompass excluded-volume
effects which are particularly conspicuous for small loops
(containing less than six nucleotides).

In view of this situation, the robustness of the simula-
tions has been tested making use of parallelism, attribut-
ing random variations in the thermodynamic parameters
to the different processors according to a Gaussian distri-
bution representing a margin of 8.8% uncertainty. The
simulations were specialized to a specific RNA species,
the phenylalanine transfer RNA from the organism E.
coli: E. coli phe tRNA [8,9]. Transfer RNA’s, with their
well-established cloverleaf base-pairing pattern, provide
an optimal testing ground for our computations. Thus
any weaknesses resulting from uncertainties in the ther-
modynamic parameters should reflect themselves in the
prediction of the dominant structure. All 18 processors
used in this test reproduced 94% of the consensus secon-
dary structure for E. coli phe tRNA. The results of the
parallel simulation are shown explicitly below. It appears
that errors do not accumulate and propagate in sequen-
tial folding algorithms the same way they do in free-
energy minimization algorithms. Thus an error in the es-
timation of a thermodynamic parameter has only a local
effect in sequential folding, involving the rate of retention
of an upstream structure, whereas in free-energy minimi-
zation algorithms, each structure competes on a global
level against all other folding alternatives.

So, far, we have sketched the basic elements needed to
determine the optimal pathway. Along this pathway, if
structure i, is chosen by the processor at time ¢, the next
structure chosen would be j,, the structure which realizes
the maximum

max;k(i,—j)=k(i,—j,) . (4)

We are, at this point, in a position to implement a
parallel extension of the kinetically controlled simulation
[1-4]. Competing pathways result from perturbations of
the optimal pathway due to occasional base-pair disrup-
tions. However, in dealing with such base-pair disrup-
tions of the transient structures, we shall not be able to
distinguish or specify the agent causing the perturbation:
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The parallel algorithm only reveals the specific stages of  linked to a specific one causes a branching of the folding
sequential folding in which a perturbation is required to  pathway.

ultimately generate the structures with the highest statist- Two essential features in the architecture of the algo-

ical weights. rithm restrict and direct the computation and make the
To model the emergence of competing pathways, we  problem of branching of folding pathways tractable:

need to introduce a connectivity matrix, as follows: (1) The system consists of a set of hierarchically lay-

ered processing units (structures). Each layer corresponds
to a fixed length N of the chain. Thus, if two structures i
and j satisfy N (i)=N(j), then they belong to the same
(6) layer Ly ;. Each layer connects via excitatory links with

the layer immediately above and receives an input from
In Eq. (6), i, j, and n denote transient structures such that  the layer immediately below.

W=[w;];, (5)

wij=k(j—>i)/ [Ek(j—»n)

i and any of the n’s are accessible from j. The connectivi- (2) The output function fy(; for layer Ly, allows
ty matrix represents in a compact fashion the links be- only certain units to produce an output signal. A unit i
tween structures and determines the architecture of the with state of activation a; produces an output
simulation, since the choice of two different structures O; = fy(a;) according to the followmg scheme:

. if la;—ayl <h(N (i), where h(N(i))~exp{—BA[N (i)]'/*}

a
Snala)= {0 otherwise . ”

The output function has been chosen in this way to incorporate structure fluctuations in the form of base pairings
and base-pair disruptions. Such fluctuations determine the branching of the optimal folding pathway. Thus the con-
stant A=1.81kg T (kjp is the Boltzmann constant) from Eq. (7) is the scaling factor for the minimal activation energy of
a refolding event [1]. The minimal activation energy between mutually accessible foldings for a chain of length N is
E,~AN'*, Thus branching of a folding pathway becomes increasingly rarer as we approach higher layers.

We may define the input of structure i at times ¢ as

a;(t+1)= zwu (1), 0<q;=1. (8)

Upon examination of Egs. (5), (6), and (8), we may conclude that the input a; is to be interpreted as the probability or
statistical weight of structure i.

Our updating strategy consists in systematically reinforcing or weakening connections at each time ¢ according to a
prescription defined by a linear map Q=Q(¢):

W=W(0) W(1) W(2) W(t) W(t+1)——s - . 9)
Q(0) (1) Q(2) )
[
This construction allows us to modify Eq. (8) by progres- The updating map {,(¢) is parametrically dependent
sively updating it: on the positive number p; which determines the rate of

convergence of the process to a winner-takes-all process,

as revealed by iterating the result of Eq. (11). Thus, given

(10) a structure j, the connection with the fastest formed im-
Qz—1)- Q( )Q (O)WZ[“’U (0] . mediate destination structure L ) which results from a

In order to understand how kinetic control could be rfefolding of j, is strengthened whereas' all other connec-
made compatible with thermodynamics, two updating  tions j—i, i %L(j ), are weakened. As inferred from Egs.
maps Q,(1) and Q(7) will be defined according to two (11)-(13), this updating strategy ends up yielding the op-

different learning strategies. The map Q(¢) is defined by timal kinetically controlled pathway.
The map Qy(¢) is defined by

a; (t+1)—2w (0)0;(1) ,

[Q(OW(D)];;=w; (£ +1)
_ U(t)+,u,0,(t)w,-j(t 8L an [Qu(OW(D)]; =w;(z +1)
- 1+”10](t)wL ])J(t) ’ _ w,j(t)+l,tnoj(t)w”(t)5](,)] (14)
where 8, (); is the Kronecker delta function, the subindex 1+ p 0y ) (Dwiy (1)
L(j) satisfies where J (i) satisfies
max;w;(2)0;(t)=wg ;;(1)0;(t) , (12)
maxjwl-j(t)oj(t)=wiJ([)(t)OJ(i)(t) . (15)
and the denominator on the right-hand side of Eq. (11) is
the normalization factor ensuring that The updating map QII( t) reinforces connections dif-
Sw,(1)=1 for all ¢ (13) ferently from Q(z). Given a destination state i, the con-
1y *

nection with the structure j =J (i) that converts into i
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with the fastest transition rate is reinforced, whereas all
other connections to destination state i are weakened.
Again, this updating map is parametrically dependent on
a positive number py;. At this point, a conjecture will be
framed which is supported by our results: For appropriate
ranges in the learning parameter iy, the updating strategy
IT makes the kinetically controlled parallel simulation
thermodynamically compatible in the long-time limit.
The evidence for this conjectured will be presented now.

In order to quantitatively compare the two strategies,
we shall first indicate how to represent the results of the
simulation in the long-time limit. Since the level of
description entails only base-pair patterns, we shall
represent the outcome by means of a matrix of base-pair
probabilities which results as we overlap the final activa-
tion states aq;(t— o0)’s. Thus, if x and y=1,2,...,N
(N =length of chain; x5*y) represent two bases along the
RNA chain, the complete long-time information is con-
tained in the N X N matrix [p,, ] defined by

Pyy = 2,0;(t— )L, (i), (16)

z

where II,,(i)=1 if bases x and y are engaged in a stan-
dard Watson-Crick base pairing in structure i, and O oth-
erwise.

We may visualize this matrix as a shade matrix, where
a fraction of the xy entry is shaded according to the prob-
ability p,,.

Since the base-pair probability matrix is symmetrical,
we shall conveniently condense the information in the
upper right or lower left triangle in Fig. 1.

The results of the parallel simulations comprised of 10°
Monte Carlo (MC) steps for the species MDV-1RNA
(N =220) [5,7] are presented in Fig. 1. The choice of pa-
rameters is u;=4.4 and pu;;=2.0. Larger values of the

10 . Updating Strategy II /'z

Updating Strategy I

210 MDV-1RNA

FIG. 1. The 220X 220 base-pair probability matrix [p,,] for
MDV-1 O3 RNA generated in the long-time limit by a parallel
kinetically controlled Monte Carlo simulation. The upper right
triangle corresponds to updating strategy II and the lower left
triangle to updating strategy I.
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FIG. 2. The most probable kinetically arrested structure of
MDYV-1 QB RNA. This structure is biologically active and re-
gulates replication of this RNA species. It is also one of the two
main contributors to the thermodynamic ensemble for MDV-1
QOB RNA. The base pairs 4-U, G-C ( A =adenine, U=uracil,
G=guanosine, C=cytosine) correspond to standard Watson-
Crick complementarity.

parameters do not lead to any appreciable difference in
the statistical weights of the dominant structures. Al-
though a detailed investigation of the ranges of conver-
gence as a function of the length of the chain would be
desirable, it is beyond the scope of this discussion. The
lower left triangle corresponds to learning strategy I and
the upper right triangle to learning strategy II. Two
significant contributions are apparent from direct exam-
ination of the upper right triangle: (a) The optimal
structure resulting from a single kinetically controlled
simulation [5], represented in Fig. 2; and (b) the most
stable structure, schematically represented in Fig. 3, re-

Global Minimum (Schematic)

——— Initiation Subsequence

FIG. 3. Scheme of the most stable structure for MDV-1 Q3
RNA. The two 21-nucleotide-long extremities featuring a high
level of Watson-Crick complementarity (see Fig. 2) are now
bound to each other.
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sulting from the binding of the highly complementary ex-
tremities of the molecule (see Fig. 2) [7] and otherwise
identical to the previous structure. The near-diagonal
base pairings in Fig. 1 correspond to the various hairpins
of the structures depicted in Fig. 2, while the base pair-
ings at the upper right corner correspond to the two ex-
tremities bound together as depicted in Fig. 3.

Most importantly, the structure represented in Fig. 2
has been shown to be biologically significant and experi-
mental evidence reveals it is the active structure required
to regulate the replication of the molecule [5,7]. On the
other hand, the most stable structure, depicted in Fig. 3,
is biologically inert since the initiation of RNA replica-
tion is blocked [7]. Both structures represent the dom-
inant contributors to the thermodynamic ensemble [7].
We can see that only strategy II is thermodynamically
compatible. When strategy I is used, a rapid convergence
to the optimal folding pathway results only in the kineti-
cally most favored structure [5] shown in Fig. 2.

The phe tRNA from E. coli (N =76), on the other
hand, provides a good additional illustration since its
stable cloverleaf secondary structure has been indepen-
dently established [8,9]. The results of both strategies are
again depicted by the 76 X 76 shade matrix shown in Fig.
4 for u;=2.24 and uy; = 1.88. The stable cloverleaf struc-
ture with hairpin base pairing near the diagonal and near
end-to-end binding is the dominant contributor to the
matrix. As expected, the convergence range for this
species is much broader relative to the longer
MDV-1RNA. For the whole parametric range indicated,
both strategies yield essentially a constant statistical
weight in the long-time limit corresponding to 10 MC
steps. Had we dealt only with the tRNA example alone,

1 2 3 4 5
é234567890|231567590123455789012345673501234561&90123455159312105513931‘3056

‘.. Updating Strategy II ._,;.'
- .o -
L
G‘u" ..‘l“ .
Updating Strategy I R L
G‘U .. Q
~  E. coli tRNA phe

a
=aomae

c
't
GCCCGGAUAGCUCAGXCGGXAGAGCAGGGGAUUGAAAAUCCCCGUXUCCUUGGUUCGAUUCCGAGUCCGGGCACCA

FIG. 4. The 76X 76 base-pairing probability matrix for the

E. coli phe tRNA in the long-time limit.

we would have not been able to properly distinguish be-
tween the two updating strategies since the thermo-
dynamic ensemble for the tRNA is basically dominated
by a single stable structure [8,9].
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